

Technology Overview: Steam Direct Injection

Motivation

- Waste heat (exhaust and coolant) contains ~50% of total fuel energy of gasoline ICE, which is more than the crankshaft power (at best efficiency operation)
- In part-load operation this is even more

Difficulties

- Waste Heat Regeneration cycles based on ORC or Clausius Rankine cycles are very expensive, relatively inefficient
- Additional costs and mass very high for vehicle application
- Instationary behaviour very bad, power control depending on heat up profile, typical delay time a few minutes

Solution

- No additional expansion unit, usage of combustion engine itself
- Dynamic behavior coupled to engine, System pressure coupled to exhaust energy

STEAM CONDITIONING AND DIRECT INJECTION

- Exhaust heat exchanger generates high pressure steam
- Steam pressure depends on waste heat energy, delayed heat up due to thermal inertia
- Steam injections depend on operating point, however it shows fast control characteristics
- Power increase and efficiency gain due to steam expansion and combustion process
- Reduction of peak temperatures and exhaust gas temperature increase component protection

P-V AND T-S DIAGRAMS

- Increased overall cylinder pressure due to increased trapped mass
- Heat supply and heat dissipation happen at lower temperature levels
- Additional mass during injection leads to higher specific entropy
- Decreased temperatures throughout the whole combustion cycle result into higher efficiency

Component design Rapid heat up vs. sufficient steam delivery rate

gofficient

HEAT EXCHANGER

Technical Design		Outlet working	$Re = rac{w \cdot d_{ m h}}{ u}$ H	ousing
Max. static pressure @ Mass flux (exhaust) Max. Backpressure @ Mass flux (exhaust)	1330mbar @ 835 kg/h 230mbar @ 835 kg/h	Inlet Ou exhau	Outlet exhaust gas	
Alpha on the exhaust side	10-120 [W/m ² K]	exhaust gas		
Alpha on the working fluid side	2.000-10.000 [W/m ² K]	$w = \frac{m}{\rho \cdot A_{\rm h}}$ Pipe bundles / Cooling	fins Isolation	
Pipe Diameter (Inside/Outside)	8/12 mm	$\log(\alpha)$	Inlet v	vorking fluid $Nu = \frac{\alpha \cdot d_{\rm h}}{\lambda_{\rm A/AM}}$
Nominal / Max. Pressure	100/120 bar			
Material	X5CrNi18-10 (V2A)	(3) Bulk boiling	Critical heat flux density	
Length/Width/Height	400/320/120 mm (15.4 L)	(2) (4) Film boiling		
Interior pipe volume				
Max. Steam delivery rate		(1) Convective	boiling	
				$\log(T_w - T_s)$

Quelle : BMW - Betrieb eines Rankine-Prozesses zur Abgaswärmenutzung im PKW

Component design of Injector for acceptable Part-load performance trade-off

INJECTOR

Simulation model Crank angle resolved model illustrates the steady behavior

gofficient

GT-POWER MODEL - STEADY STATE

Engine displacement : 2.2 L

Steam injection is overlaid onto

baseline burn rate to avoid side effects

Vehicle gross weight : 2830 kg

Simulation model Time resolved model illustrates dynamic behavior and cross*gofficient* interference

SIMULINK MODEL - DYNAMIC

Background

- Component heat up is simulated
- The whole exhaust gas system needs to be simulated to determine the exhaust energy at the heat exchanger
- Time constants have been derived from real world measurements
- Steam pressure can be monitored
- A pressure based steam control strategy is implemented
- The model allows to simulate prebuild driving cycles such as WLTP and RDE

Simulation results Taking full advantage of early steam injections is key to high efficiency

PART LOAD PERFORMANCE - 2000RPM 11BAR - 100BAR INJECTION

GT-Power Results

- Low rotational speed allows for short injection timing
- Load point stability enables pre p_{max} injections leading to higher efficiency
- Combustion peak temperature can be lowered significantly by
- Decreased exhaust temperature beneficial for component protection
- Since the baseline point is not knock limited, the efficiency gain can be pushed even further by allowing operation at a higher rel. knock level than baseline

Injection Timing [Start/End °CA]

gofficient

STEAM INJECTION ENGINE MAP - OVERVIEW

- Steam injections enable $\lambda = 1$ operation on the entire engine map
- Higher efficiency leads to lower specific consumption (minimal 215 g/kWh)
- Furthermore the area of up to 230 g/kWh is expanded
- The peak torque can be achieved at lower engine speed

Simulation results WLTP takes full advantage of fast heat up and torque boost *gofficient*

CYCLE SIMULATION WLTP

Cycle Simulation Results

- The heat exchanger is able to extract a significant amount of energy from the exhaust gas
- After short heat up period (365s) the system is fully operational
- 25.8L/100km water consump.

Fuel consumption [L/100km]

Simulation results Overall benefit of in-cycle fuel consumption comes at a cost *gofficient*

COST ESTIMATE

Component	Estimate
Heat Exchanger	100-200€
Injector	4x50 €
High Pressure Pump	25€
Reservoirs e.g.(SCR Tank)	10-30€
Piping and Isolation Material	15-40€
Recuperator	50-120€
Water separator + Valves	5-15€
Sum	405-630€

Opportunities	Challenges	
Up to 21 g/km CO ₂ reduction in WLTP	Condensation along the piping must be prevented	
Enables λ = 1 operation at all load points	Water freezing must be prevented	
Overall torque boost increases peak power output	■ High water consumption → water recuperation system necessary	
Synergy effects with liquid water injection / use of common components	Validation of real combustion process necessary	

Steam Direct Injection Key facts

gofficient

Key facts Steam direct injection

- Steam generation by Exhaust heat exchanger up
- Steam Power available on demand
- No additional expansion device necessary, steam injection into main engine
- Part-efficiency of bottom cycle up to 30%
- Maximum Power gain (for limited time) ~10kW
- Additional positive influence to base engine
 - Soot reduction by agglomeration and peak combustion temperature reduction
 - Component protection included due to lower exhaust gas temperatures – all Lambda 1

Key facts Turbo Steamer

- Steam generation by Exhaust heat exchanger up to 5-50bar
- Continous steam power generation, independent from usage
 → needs to be buffered
- Expansion device is turbine or cell expander, efficiency strongly dependent on OP point
- Cycle efficiency including pinch-effect 10..15%
- Electrical power generation of max. 2kW