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Steam Direct Injection
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Technology Overview: Steam Direct Injection

Motivation

◼ Waste heat (exhaust and coolant) contains ~50% of total fuel energy of gasoline ICE,

which is more than the crankshaft power (at best efficiency operation)

◼ In part-load operation this is even more

Difficulties

◼ Waste Heat Regeneration cycles based on ORC or Clausius Rankine cycles are very expensive, 

relatively inefficient

◼ Additional costs and mass very high for vehicle application

◼ Instationary behaviour very bad, power control depending on heat up profile, typical delay time a few 

minutes

Solution

◼ No additional expansion unit, usage of combustion engine itself

◼ Dynamic behavior coupled to engine, System pressure coupled to exhaust energy
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Combination of known processes in a single expansion 

machine is key
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STEAM CONDITIONING AND DIRECT INJECTION

◼ Exhaust heat exchanger generates high pressure steam 

◼ Steam pressure depends on waste heat energy, delayed heat up due to thermal inertia

◼ Steam injections depend on operating point, however it shows fast control characteristics

◼ Power increase and efficiency gain due to steam expansion and combustion process

◼ Reduction of peak temperatures and exhaust gas temperature increase component protection

Control valve Water separator
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Compressor
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Air filter
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Thermodynamics

Impact of steam injection on process control
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P-V AND T-S DIAGRAMS

◼ Increased overall cylinder pressure due to increased trapped mass 

◼ Heat supply and heat dissipation happen at lower temperature levels

◼ Additional mass during injection leads to higher specific entropy

◼ Decreased temperatures throughout the whole combustion cycle result into higher efficiency
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Component design

Rapid heat up vs. sufficient steam delivery rate 
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HEAT EXCHANGER

Quelle : BMW - Betrieb eines Rankine-Prozesses zur Abgaswärmenutzung im PKW

Technical Design

Max. static pressure @ Mass 

flux (exhaust)

Max. Backpressure @ Mass flux 

(exhaust)

1330mbar @ 835 kg/h

230mbar @ 835 kg/h

Alpha on the exhaust side 10-120 [W/m²K]

Alpha on the working fluid side 2.000-10.000 [W/m²K]

Pipe Diameter (Inside/Outside) 8/12 mm

Nominal / Max. Pressure 100/120 bar

Material X5CrNi18-10 (V2A)

Length/Width/Height 400/320/120 mm 

(15.4 L)

Interior pipe volume 1.15 L

Max. Steam delivery rate 30 g/s

Inlet working fluid

Inlet 

exhaust gas

Housing

Pipe bundles

Cooling fins

Isolation

Outlet working 

fluid

Outlet

exhaust gas
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Component design of Injector for acceptable 

Part-load performance trade-off
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INJECTOR

Max. rel. steam mass at Damax= 80°KW
at operation with 100bar/311°C saturated steam 
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Simulation model

Crank angle resolved model illustrates the steady behavior
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GT-POWER MODEL - STEADY STATE

Steam injector Fuel injector

◼ No test engine with direct steam 

injectors available 

◼ 1-D Simulation tools used to simulate 

the behavior

◼ The baseline model is tuned with 

readings from the engine test bench

◼ The steady state behavior lies in focus 

◼ Steam injectors were implemented as 

described previously

◼ Steam injection is overlaid onto 

baseline burn rate to avoid side effects

Background

Engine displacement : 2.2 L

Vehicle gross weight : 2830 kg
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Simulation model

Time resolved model illustrates dynamic behavior and cross-

interference
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SIMULINK MODEL –  DYNAMIC

◼ Component heat up is simulated 

◼ The whole exhaust gas system needs 

to be simulated to determine the 

exhaust energy at the heat exchanger

◼ Time constants have been derived 

from real world measurements 

◼ Steam pressure can be monitored

◼ A pressure based steam control 

strategy is implemented

◼ The model allows to simulate prebuild 

driving cycles such as WLTP and RDE

Background
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Simulation results

Taking full advantage of early steam injections is key to high 

efficiency
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PART LOAD PERFORMANCE - 2000RPM 11BAR – 100BAR INJECTION

◼ Low rotational speed allows for short 

injection timing (15°CA)

◼ Load point stability enables pre pmax

injections leading to higher efficiency

◼ Combustion peak temperature can 

be lowered significantly by 350 K 

◼ Decreased exhaust temperature 

beneficial for component protection 

◼ Since the baseline point is not knock 

limited, the efficiency gain can be 

pushed even further by allowing 

operation at a higher rel. knock level 

than baseline

GT-Power Results
Steam injection

Simulation Results

Load point: 2000 rpm / 11 bar

Engine
_______________________

Bore:                       
Stroke:                  
Cylinder.:                
Intake Valve Lift:    
Exhaust Valve Lift: 
Vse_in:                  
Vse_out:               
MBF50%:               
MBF10/90:            
Amb.Temp.:           
Steam mass:          
Puls duration:        

89 mm
88.3 mm
4
8.8 mm
9.0 mm
81°
90°
5.7°
17°
20 °C
105 mg/cycle
15 °CA

Relative steam mass 
relating to intake air = 20% 
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Simulation results

Relevant engine operation points
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STEAM INJECTION ENGINE MAP - OVERVIEW 
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◼ Steam injections enable λ = 1 operation on the entire engine map

◼ Higher efficiency leads to lower specific consumption (minimal 215 g/kWh)

◼ Furthermore the area of up to 230 g/kWh is expanded

◼ The peak torque can be achieved at lower engine speed
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Simulation results

WLTP takes full advantage of fast heat up and torque boost 

10

CYCLE SIMULATION WLTP 

◼ The heat exchanger is able to

extract a significant amount of 

energy from the exhaust gas

◼ After short heat up period (365s) 

the system is fully operational

◼ 25.8L/100km water consump.

Cycle Simulation ResultsSteam injection

Simulation Results

WLTP Cycle

Relative steam mass 
relating to intake air = 0-35% V
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Simulation results

Overall benefit of in-cycle fuel consumption comes at a cost
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COST ESTIMATE

Component Estimate

Heat Exchanger 100-200 €

Injector 4x50 €

High Pressure 

Pump
25 €

Reservoirs 

e.g.(SCR Tank)
10-30 €

Piping and 

Isolation Material
15-40 €

Recuperator 50-120 €

Water separator + 

Valves
5-15 €

Sum 405-630€

◼ Up to 21 g/km CO2 reduction in 

WLTP

◼ Enables λ = 1 operation at all 

load points

◼ Overall torque boost increases 

peak power output

◼ Synergy effects with liquid water 

injection / use of common 

components

◼ Condensation along the piping 

must be prevented

◼ Water freezing must be 

prevented

◼ High water consumption →

water recuperation system 

necessary 

◼ Validation of real combustion 

process necessary

ChallengesOpportunities
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Steam Direct Injection

Key facts
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Key facts Steam direct injection

◼ Steam generation by Exhaust heat exchanger up 

to 20-100bar

◼ Steam Power available on demand

◼ No additional expansion device necessary,

steam injection into main engine

◼ Part-efficiency of bottom cycle up to 30%

◼ Maximum Power gain (for limited time) ~10kW

◼ Additional positive influence to base engine

◼ Soot reduction by agglomeration and peak 

combustion temperature reduction

◼ Component protection included due to lower 

exhaust gas temperatures – all Lambda 1

Key facts Turbo Steamer

◼ Steam generation by Exhaust heat exchanger up 

to 5-50bar

◼ Continous steam power generation, independent 

from usage

→ needs to be buffered

◼ Expansion device is turbine or cell expander,

efficiency strongly dependent on OP point

◼ Cycle efficiency including pinch-effect 10..15%

◼ Electrical power generation of max. 2kW
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